If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-320x+160=0
a = 12; b = -320; c = +160;
Δ = b2-4ac
Δ = -3202-4·12·160
Δ = 94720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{94720}=\sqrt{256*370}=\sqrt{256}*\sqrt{370}=16\sqrt{370}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-320)-16\sqrt{370}}{2*12}=\frac{320-16\sqrt{370}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-320)+16\sqrt{370}}{2*12}=\frac{320+16\sqrt{370}}{24} $
| 2x^2+1=8x+15 | | b-4=45 | | 34b=10 | | 5/(x+5)=19/4(x) | | 1/5h+4=3/4+8 | | 5/x+5=19/4x | | 15x+6x-253=83 | | 1/5h+4=3/4+5 | | -10(x+2)=-34(x+8)+900 | | 6x+0=7x+8 | | w/5+4=w/3 | | 3x+5+7=7+2x | | -2(w+3)=3(+4)+7 | | 3+g=39 | | 8n+2=10 | | -25.6x+((8x+10)/5)=32 | | 1x^2-4x+5=0 | | -1/5y-7/4=-5/3 | | 6x+9=4x+8 | | (f/45)-(2/9)=(2/9) | | -16.5x1.44=x | | 2(3b+5)=58# | | 16+2x=28 | | -10x+2=31x+-1105 | | n/8-12=6 | | 42=10-2y | | 0=120t-5t^2 | | -26+4x=-39+9x= | | 7x-2x=4 | | -5(4x-7)=8=3x | | 6s=120 | | 5x+(-15)=90 |